Development of Decentralized Livestock Pathogen POC Testing -Lessons Learned from the Pandemic

<u>IB Marsh</u>, RJ Barnewall, TM Williams, PMV Cusack, N Sales, F Galea, AN Szentirmay, JM. Ruijter, MJB. van den Hoff and JC Quinn

BIOSEARCH[™] TECHNOLOGIES

GENOMIC ANALYSIS BY LGC

Amsterdam UMC Medical Biology

What is Bovine Respiratory Disease?

Characterised by

- Nasal and/or oral discharge
- Lethargy
- Inappetence

- Coughing
- Diarrhea
- Dehydration

Why is BRD important?

- Australia, approx. \$40 million per annum
- Globally, approx. \$3 billion per annum

Bovine Respiratory Disease (BRD)

'Bovine Respiratory Disease (BRD) is arguably the most complicated mammalian disease that exists.'

Richardson and Falkner, 2020, Vet Clin Food Anim 36 (2020) 473–485

Bovine Respiratory Disease

- Animal
- Maturity
- Naivety
- Exposure
- Vaccination
- Treatment
- Management

Richardson and Falkner, 2020, Vet Clin Food Anim 36 (2020) 473–485

Project Task

Develop a molecular capability to :

- Better understand BRD
- Better understand agents
- Better understand affected animals
- Used for mass screening
- Aid management in feedlot systems

Pathogen vs Normal Flora

True Pathogens

Bovine herpes virus (BHV) *Mycoplasma bovis*

Plus additional risks from: Bovine viral diarrhoea virus (BVDV) Bovine respiratory syncytial virus (BRSV), Bovine coronavirus (BCoV) Bovine parainfluenza virus type 3 (BPI3), , bovine enterovirus, bovine adenovirus,

Normal Flora

Mannheimia haemolytica Pasteurella multocida Histophilus somni Trueperella pyogenes

Proliferation

- Proliferations occurs in the upper respiratory tract
- Move to the lungs
- Agents excreted through the nose

The Test

- Sample using standard swab
- Two true qPCR multiplex tests

• Test 1

- Bovine herpes virus (BHV)
- Histophilus somni
- Trueperella pyogenes
- Bovine beta actin control

• Test 2

- Mycoplasma bovis
- Mannheimia haemolytica
- Pasteurella multocida
- Bovine beta actin control

The Constraints

- Detect multiple agents in a single test
- Fast (same day or less) results
- Performed on site (no lab required)
- Easy to interpret
- Low cost PCR platform
- <\$8 per animal (mob pricing)
- Extraction efficiency
- Accurate quantitation

Our Answer

pio molecular systems

Our Answer

BIOSEARCH[™] TECHNOLOGIES

GENOMIC ANALYSIS BY LGC

FAMTm CAL Fluor(R) Orange 560 CAL Fluor[®] Red 610 Quasar[®] 670

Dye	Excitation	Emission	Channel	Application
BEBO	468	492		Intercalating
LC Green®	455	495		HRM dye
SYTO® 9	483	503		HRM dye
FAM™ (best)	494	515		Conjugated label
SYBR® Green I	494	521		Intercalating
RiboGreen®	500	520		RNA label
PicoGreen®	502	523		ds DNA label
Eva Green®	503	527		HRM dye
TETIM	521	536	suboptimal	Conjugated label
CAL Fluor® Gold 540	522	541	suboptimal	Conjugated label
JOE™	520	548	suboptimal	Conjugated label
VIO®	538	554		Conjugated label
НЕХТМ	535	555		Conjugated label
CAL Fluor Orange 560 (best)	540	561		Conjugated label
Quasar® 570	548	566		Conjugated label
Сутмз	550	570		Conjugated label
NEDTH				
NED	546	575		Conjugated label
TAMRA™	546 555	575 576		Conjugated label
TAMRA TM CAL Fluor® Red 590	546 555 565	575 576 588	x	Conjugated label Conjugated label Conjugated label
TAMRATM CAL Fluor® Red 590 ROXTM	546 555 565 573	575 576 588 602	x	Conjugated label Conjugated label Conjugated label Conjugated label
TAMRATM CAL Fluor® Red 590 ROXTM Texas Red®	546 555 565 573 583	575 576 588 602 603	x	Conjugated label Conjugated label Conjugated label Conjugated label Conjugated label
TAMRA TM CAL Fluor® Red 590 ROX TM Texas Red® CAL Fluor® Red 610 (best)	546 555 565 573 583 590	575 576 588 602 603 610	x	Conjugated label
TAMRATM CAL Fluor® Red 590 ROXTM Texas Red® CAL Fluor® Red 610 (best) LO® Red 640	546 555 565 573 583 590 620	575 576 588 602 603 610 635	X	Conjugated label
TAMRA TM CAL Fluor® Red 590 ROX TM Texas Red® CAL Fluor® Red 610 (best) LC® Red 640 Quasar® 670 (best)	546 555 565 573 583 590 620 647	575 576 588 602 603 610 635 667	X	Conjugated label Conjugated label Conjugated label Conjugated label Conjugated label Conjugated label Conjugated label Conjugated label
TAMRATM CAL Fluor® Red 590 ROXTM Texas Red® CAL Fluor® Red 610 (best) LC® Red 640 Quasar® 670 (best) CyTM 5	546 555 565 573 583 590 620 647 651	575 576 588 602 603 610 635 667 674	x	Conjugated label
TAMRATM CAL Fluor@ Red 590 ROXTM Texas Red@ CAL Fluor@ Red 610 (best) LO@ Red 640 Quasar@ 670 (best) CyTM 5 CyTM 5.5	546 555 565 573 583 590 620 647 651 675	575 576 588 602 603 610 635 667 674 694	x	Conjugated label

BIOSEARCH TECHNOLOGIES GENOMIC ANALYSIS BY LGC QUICKEXTRACTTM DNA

Extraction Solution

Extract DNA in 8 minutes or less

- Efficiently extract and store PCR-read
- DNA Ideally suited to automated liquid handling

BIOSEARCH[™] TECHNOLOGIES

GENOMIC ANALYSIS BY LGC

QuickExtract[™] DNA Extraction Solution

- Specifically optimised for fast, simple extraction of (q)PCRready DNA
- 3-8 minute protocol for most sample types
- No centrifugation steps, no spin columns, scalable based on sample size
- Automation-friendly
- Safe: uses only non-toxic reagents
- Can be stored at 4 °C for up to 1 month

The Approach

The Approach

Tests	Details						
No. of cattle tested	40 per	run					
No. of tests per animal	2						
No. of PCR tubes per animal	2						
No. of pathogens tested	6						
Test 1 (Multiplex)	1 Viral, 2 bacterial and 1 endogenous control						
Test 2 (Multiplex)	3 bacterial and 1 endogenous control						
Test Protocol	Details Operator time						
No. Operators	1						
DNA extraction	20 mins	20 mins					
PCR reaction preparation Automated reaction preparation Automated sample addition	20 mins	5 mins					
PCR	75 mins	5 mins					
Analysis		20-30 min					
Total time per run	2 hrs	1 hr					
Scalable	Details	Samples per 2 hours					
Option 1 (1 operator)	1 Liquid Handling station	First run – 40					
	2 Thermocyclers	Subsequent runs – 40					
Option 2 (1 operator)	1 Liquid Handling station	First run – 40					
	4 Thermocyclers	Subsequent runs – 80					
Option 3 (2 operators)	2 Liquid Handling station	First run – 80					
	4 Thermocyclers	Subsequent runs – 80					
Option 3 (2 operators)	2 Liquid Handling station	First run – 80					
	8 Thermocyclers	Subsequent runs – 160					
Deployable							
Can entire protocol be deployed in	Yes	8					
field	The entire protocol can be run iden	tically in field or in the laboratory					
Results	Field	Laboratory					
Qualitative (presence absence)	Yes	Yes					
Semi-Quantitative (standard curve)	Yes	Yes					
True Quantitative (efficiency corrected	Yes	Yes					
single point calibration)	(only platform at present to do this)	(only platform at present to do this)					
	Critical for accurate differentiation of	Critical for accurate differentiation					
	disease or expression at high Cq	of disease or expression at high Cq					
	values values						

The Outcome, (hopefully)

Quantitative PCR

(Standard Curve)

Equation: y = -3.137 x + 34.4Efficiency: 1.083 R²: 0.9931 Export...

Efficiency Corrected Quantitative PCR

The Best Covid lockdown Video Conference Meetings in 2020 😳

Quantitative PCR

(Efficiency corrected)

Equation: y = -3.137 x + 34.4Efficiency: 1.083 R²: 0.9931 Export...

qPCR Efficiency Reproducibility

- 16 biologically distinct samples
 - 1-8 randomly selected animals
 - 9-12 induction animals
 - 13-16 hospital animals
- 6 technical replicates
- PCR for
 - Mannheimia haemolytica
 - Mycoplasma bovis
 - Pasteurella multocida
 - Trueperella pyogenes
- Cq values (left)
- Efficiency values (right)

qPCR Efficiency Reproducibility Across individual PCR Mic thermocyclers

Left Figure

Right Figure

- Scatterplots of individual biological samples per qPCR machine (n=4)
- Offset data points represent the biological samples used to test the reproducibility of the observed PCR efficiency
- Number of observations per target and machine differs as each agent is not present in every subject

- PCR efficiencies for selected biological samples showing the mean of 6 technical replicates per sample.
- Dotted black lines indicate the standard sample.
- Blue horizontal bars indicate homogeneous subsets of samples that do not differ significantly from each other
- Non-overlapping parts of the blue bars indicate sample(s) that differ significantly at P=0.05.

Significant achievement /outcome from the project

Clinical Chemistry

<

Peer-reviewed journal

Clinical Chemistry is a peer-reviewed medical journal covering the field of clinical chemistry. It is the official journal of the American Association for Clinical Chemistry. Wikipedia

Impact Factor: 8.327 (2020) History: 1955-present

ISSN: 0009-9147 (print); 1530-8561 (web) Publisher: American Association for Clinical

Chemistry (United States)

Indexing: Indexing;

OCLC number: 01554929

Disciplines: Clinical chemistry, Medical laboratory

Clinical Chemistry 67:6 829-842 (2021)

Efficiency Correction Is Required for Accurate Quantitative PCR Analysis and Reporting

Review

Jan M. Ruijter,^a Rebecca J. Barnewall,^{b,c} Ian B. Marsh,^d Andrew N. Szentirmay,^e Jane C. Quinn,^{b,c} Robin van Houdt,^f Quinn D. Gunst,^a and Maurice J.B. van den Hoff^{a,*}

^aDepartment of Medical Biology, Amsterdam University Medical Centres, Location Academic Medical Center, Amsterdam, the Netherlands; ^bSchool of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia; ^cNSW Department of Primary Industries), Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia; ^dNew South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Narellan, NSW, Australia; ^eGene Target Solutions, Dural, NSW, Australia; ^fDepartment of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centres, Amsterdam, the Netherlands.

Deployment

Alpha test

Alpha test

Power

Department of Primary Industries

Storm

Primary study on 2 NSW feedlots

ORIGINAL ARTICLE

Efficiency-corrected PCR quantification for identification of prevalence and load of respiratory disease-causing agents in feedlot cattle

RJ Barnewall, ab 🗈 IB Marsh, TM Williams, ab, to PMV Cusack, ad N Sales, Construction of Construction of Construction of the PMV Cusack, and N Sales, Construction of Constru

Analysis

	PODD BRD Efficiency Corrected (EC) Data Sheet											
	PODI		ency correct	eu (c	CJ Dulu S	meet						
	See. in	al dala			Location U			Dar	14		Plate	
	His isse	L desta										
	TARG	al Histoph	ilus somai		Samples (anknowns)				1	Ban Accept	ance
	E Square				R Squared						The free p	
	A ntrala	le delecie	1.11		Anneniahle	,	1.11	Baard on BHS I	transportations		Control	Recall
	111	ra <u>Ca</u>	E E		Assesser of a		1.15	E [sample]			188 Capira/pL	25
	Antes Landard ere	47 26.48 47 8.473	8.38		Slandard eres		8.818				18 CapiralyL 1 CanizalaL	
	18 annie	- <u>-</u>	E		Quantitation	lkeeskalda					Wales	
2	andard ere	er 23.33	8.37 8.818		E Janreage E Janreage	۰ ۲	8.36 8.76					E^{C_T} standard
	1	<u> </u>	Ľ								N _{0 sample} = N _{0 standard}	< rstandard rCr sample
2	and and area	4r 33.72 r 1.271	8.32 8.826		His Res Band			•				L _{sample}
			RAW	EXPORT				Selest		TO		
	COLUMNIT	30. Well	Sample	4	Efficiency R [.]		Recall	las/akl	Colouralel Recoded E	Readed R2	es/al	an/ak
	SAMPLE		1 700A 2 701A	23.68634	-1 1.119148295	1.33164	Coolodr	1511	23.63 1.1	1.00	4878.22846654	D
	SAMPLE		5 782A 4 783A	25.1127	1.050921045	8.33841			25.11 1.0	1.0	9219.15979165 189.48519271	103
	SAMPLE		5 784A	35.34582	8.775525546	8.55552			55.52 8.7	111	335.35738853	116
	SAMPLE		7 786A	•1	•1	13661	El.d.	PHY 188 - 5788	1.11 1.11		and eleveled	r i
	SAMPLE		8 787A 3 788A	99.86875 41.85686	8.821848257	8.33356 8.33623		H., YZ 100 - 9500 Hil 100 - 9500	55.87 8.88 41.85	1.0	363.87118338 242162133486.2818888	364 D
	SAMPLE		18 783A 44 798A	36.25874	8.764154871	1.33373		HL 188 - 5478 R- 188 - 5488	35.25 0.71	1.0	275.87756655	211
	SAMPLE		12 751A	34.58277	8.81292285	1.33337	<u> </u>	T. 111 - 1551	34.31		292.25156184	292
	SAMPLE		19 792M 14 799A		1		E		0.00 0.00 0.0		andeleated	
	SAMPLE		15 794A 16 795A		-1 -1		Essladr: Essladr:		0.00 0.01 0.00 0.01	0.00	and strated and strated	
	SAMPLE		17 796A 48 797A	95.24182	8.753134813	8.55562			95.24 8. 71	1.0	548.67921918	D
	SAMPLE		13 738A		-		E l. d.		1.11 1.11		andstealed	
	SAMPLE		20 733M 21 888A		1		E		0.00 0.01 0.00 0.01		andeleated	
	SAMPLE		22 881A 29 882a		1 1		Essladr: Essladr:		0.00 0.0) 0.00 0.0)	0.00	and clouded and clouded	
	SAMPLE		24 883A				Englades		1.11 1.11		and clouded	
	SAMPLE		26 885A		-1		El.d.		1.11	1.11	andeleated	
	SAMPLE		27 88A 28 887A	36.5005	1.763136374	1.33352			35.53 8.77	1.0	214.38642735	215
	SAMPLE		29 888A 38 883A	35.42744	0.055067909 -1	8.3333	Englader		36.43 0.0	1.11	48.59286665	41
	SAMPLE		51 818A				Englades		1.11 1.11		and clouded	
	SAMPLE		55 812A		-		Casladr		1.11 1.11		andeleated	
	SAMPLE		34 813A 35 814A		1		E e e l e d e e		0.00 0.01 0.00 0.01		and strated	
	SAMPLE		36 815A 37 816A		्रत		Essladr: Essladr		0.00 0.01 0.00 0.01		and strated and strated	
	SAMPLE		18 817A		-		E ladr		1.11 1.1		andstealed	
	SAMPLE		48 813A	16.11275	1. 551451411.1	1.11155	Contrady		36.31	1.0	121.21522233	121
	PROCESS C STANDARD	юн	41 PC 42 Supremin • 188 Capien/	 26.9215	-1 0.905790665	8.33364	Essladr	PROCESS CONTROL STANDARD	26.92	1.11	and clouded 3485.33577775	D
	STANDARD		(1) Supermine (11) Capital (4) Supermine (11) Capital	26.48842	8.979558762	8.3337		STANDARD	26.48 8.53	1.0	3673.25528354	D
	STANDARD		15 Sapremia · 18 Capira/p	38.85455	8.955989688	8.33383		STANDARD	38.85 8.3	1.0	424.36383151	424
	STANDARD		46 Sapremia · 1 Capira/pL 47 Sapremia · 1 Capira/pL	99.99526 99.4526	1.945975686	8.33387 8.33333		STANDARD	54.00 0.33 53.45 0.03	1.0	55.87612451 127.67558887	128
	REGATIVE		O Waler		्रा		Englade	HEGATIVE	1.11 1.11	1.11	andelealed	

PODD BRD Efficiency Corrected (EC) Data Sheet

Location

Mic Run Number

0

Cycles excluded (minimise impact of background noise on analysis) =

User input data

Key

Drop down menu

Mic input data

TARGET =	Histophilus somni							
R Squared								
Acceptable limits	>	0.98						
Standards Anlysis								
100 copies	Cq	E						
Average	26.40	0.98						
Standard error	0.079	0.006						
10 copies	Cq	E						
Average	29.93	0.97						
Standard error	0.123	0.010						
1 сору	Cq	E						
Average	33.72	0.92						
Standard error	0.271	0.026						

Samples (unkno	wns)		
R Squared			
Acceptable limits	>	0.98	Based on BMS Recommendations
E			
Average of unknowns		0.86	E (sample)
Standard error		0.018	
Quantitation thresholds			
E(average+0.1)	<	0.96	All samples outside of these E limits for quantitation must be
E (average-0.1)	>	0.76	considered as qualitative results only

 Run Acceptance

 Control
 Result

 PC (Process Control)
 -1

 100 Copies/µL
 26

 10 Copies/µL
 30

 1 Copies/µL
 34

 Water
 -1

1

Plate

			RAW EXPORTED	DATA		Select			ROUNDED DATA		Γ	EC QUANTIFICATION	FINAL RESULTS
COLUMN (Title)	Well	Sample	Cq Ef	ficiency F	R ² Result	(ng/mL)		Cq (sample)	Rounded E	Rounded R2		ng/mL	ng/mL
SAMPLE		1 780A	-1	-1	Excluded	3580		0.00	0.00	0.00		undetected	
SAMPLE		2 781A	23.6869382	1.113140235	0.99864		-	23.69	1.11	1.00		4870.22816691	D
SAMPLE		3 782A	25.1127775	1.058921045	0.99841			25.11	1.06	1.00		3219.15979165	D
SAMPLE		4 783A	36.3112219	0.781542325	0.99959			36.31	0.78	1.00		189.40519271	189
SAMPLE		5 784A	35.3150237	0.773329916	0.99992			35.32	0.77	1.00		396.36730053	396
SAMPLE		6 785A	30.566147	0.998161832	0.99921			30.57	1.00	1.00		156.66985153	D
SAMPLE		7 786A	-1	-1	Excluded	BHV 100 = 3780		0.00	0.00	0.00		undetected	
SAMPLE		8 787A	33.8687528	0.821840257	0.99956	HsV2 100 = 3580		33.87	0.82	1.00		363.87110990	364
SAMPLE		9 788A	41.056857	0.66825519	0.99629	Mb 100 = 3500		41.06	0.00	1.00		242162193406.20100000	D
SAMPLE		10 789A	36.2507419	0.764154871	0.99979	Mh 100 = 3470		36.25	0.76	1.00		279.87736695	280
SAMPLE		11 790A	35.857637	0.838069756	0.99988	Pm 100 = 3400		35.86	0.84	1.00		80.29898982	80
SAMPLE		12 791A	34.9027699	0.81292209	0.99997	Tp 100 = 3560		34.90	0.81	1.00		232.25156184	232
SAMPLE		13 792A	-1	-1	Excluded			0.00	0.00	0.00		undetected	
SAMPLE		14 793A	-1	-1	Excluded			0.00	0.00	0.00		undetected	
SAMPLE		15 794A	-1	-1	Excluded			0.00	0.00	0.00		undetected	
SAMPLE		16 795A	-1	-1	Excluded			0.00	0.00	0.00		undetected	
SAMPLE		17 796A	35.2418209	0.759134819	0.99962			35.24	0.76	1.00		548.67921910	D
CAMPUT		10 2024	1	4	Fueluded			0.00	0.00	0.00			
Cut and Paste	BHV	Tp HsV2 β Actin T1	Mb Mh Pm	β Actin T2	Master Sheet Target Drop Dow	n Menu 🛛 🤆	•) :	4					

Day 0

-

Prevalence

- Prevalence (% +/- CI) of the BRD agents at 2 feedlots induction
- Induction (I) and hospital (H) cohorts
- Fischer's exact test: * p ≤ 0.05, ** p ≤0.01, ***
 p≤0.001,

Microorganism

Microorganism

Agent Combination

- Occurrence of combinations of PCR detectable agents
- Hospital animals only
- Feedlot 1 n=54, Feedlot 2 n=96

Bayesian Network Modelling

- Predicting hospital treatment (pull) reason of induction cohorts
- 2 Australian feedlots, with no post induction pull reasons selected.

Survey 2021

- 4 Feedlots and different in distinct geographic locations in NSW
- Sampling animals at
 - Day 0 (induction)
 - Day 14 (Re-vaccination)
 - Hospital
- Approximately 500 cattle/feedlot
- 2000 cattle twice (4000 samples)
- 8000 qPCR tests

RESULTS – being analysed right now

• qPCR + clinical + environmental data

Bovine Respiratory Disease (BRD)

'Bovine Respiratory Disease (BRD) is arguably the most complicated mammalian disease that exists.'

Richardson and Falkner, 2020, Vet Clin Food Anim 36 (2020) 473–485

I think we discovered its even more complicated

Our Project Team

Dr Ian Marsh (NSW DPI EMAI lead) Andrew Szentirmay (GTS) Dr Jan Ruijter (Amsterdam UMC) Dr Maurice van der Hoff (Amsterdam UMC) Ms Narelle Sales (NSW DPI EMAI) Ms Francesca Galea(NSW DPI EMAI)

Professor Jane Quinn (CSU lead) Ms Rebecca Barnewall (PhD candidate CSU, MLA scholarship recipient) Dr Thomas Williams (CSU Post-doc) Ms Nancy Saji (CSU Post-doc) Ms Veronika Vicic (PhD candidate CSU, MLA scholarship recipient) Dr Michael Campbell (CSU) Professor Paul Cusack (Adjunct CSU, ALPS)

Thank you

Joy Kang

BIOSEARCH[™] TECHNOLOGIES

GENOMIC ANALYSIS BY LGC

Andrew Szentirmay

